Search results for "Targeted cancer therapy"

showing 4 items of 4 documents

Highly Homogeneous Biotinylated Carbon Nanodots: Red-Emitting Nanoheaters as Theranostic Agents toward Precision Cancer Medicine

2019

Very recent red-emissive carbon nanodots (CDs) have shown potential as near-infrared converting tools to produce local heat useful in cancer theranostics. Besides, CDs seem very appealing for clinical applications combining hyperthermia, imaging, and drug delivery in a single platform capable of selectively targeting cancer cells. However, CDs still suffer from dramatic dot-to-dot variability issues such that a rational design of their structural, optical, and chemical characteristics for medical applications has been impossible so far. Herein, we report for the first time a simple and highly controllable layer-by-layer synthesis of biotin-decorated CDs with monodisperse size distribution, …

Fluorescence-lifetime imaging microscopyphotothermal therapyMaterials scienceCell SurvivalAntineoplastic AgentsNanotechnology02 engineering and technology010402 general chemistrytargeted cancer therapy01 natural sciencesDrug Delivery Systemsbiotincarbon nanodotCell Line TumorCarbon nanodotsHumansGeneral Materials SciencePrecision MedicineRational designimagingPhotothermal therapy021001 nanoscience & nanotechnologyCarbonNanostructures0104 chemical sciencesbiotin; carbon nanodots; imaging; photothermal therapy; targeted cancer therapy.Settore CHIM/09 - Farmaceutico Tecnologico ApplicativoBiotinylationDrug deliveryCancer cellMCF-7 CellsSurface modification0210 nano-technologyACS Applied Materials & Interfaces
researchProduct

SPIONs embedded in polyamino acid nanogels to synergistically treat tumor microenvironment and breast cancer cells.

2018

Abstract The extremely complex tumor microenvironment (TME) in humans is the major responsible for the therapeutic failure in cancer nanomedicine. A new concept of disease-driven nanomedicine, henceforth named “Theranomics”, which attempts to target cancer cells and TME on the whole, represents an attractive alternative. Herein, a nanomedicine able to co-deliver doxorubicin and a tumor suppressive proteolytic protein such as collagenase-2 was developed. We successfully obtained superparamagnetic nanogels (SPIONs/Doco@Col) via the intermolecular azide-alkyne Huisgen cycloaddition. We demonstrated that a local ECM degradation and remodeling in solid tumors by means of collagenase-2 could enha…

Polyamino acidPolyamino acidsCollagenasePharmaceutical ScienceBreast Neoplasms02 engineering and technology030226 pharmacology & pharmacy03 medical and health sciences0302 clinical medicineBreast cancerBreast cancerDrug Delivery SystemsCell Line TumormedicineTumor MicroenvironmentHumansDoxorubicinTargeted cancer therapyAmino AcidsMagnetite NanoparticlesTumor microenvironmentAntibiotics AntineoplasticChemistrySPIONCancerTheranomicDrug Synergism021001 nanoscience & nanotechnologymedicine.diseasenanomedicineNanomedicinesDrug LiberationSPIONsMatrix Metalloproteinase 8DoxorubicinCancer cellCancer researchNanomedicineTheranomicsFemaleBreast cancer cellspolyamino acid0210 nano-technologyGelsmedicine.drugInternational journal of pharmaceutics
researchProduct

Inulin for Cancer Therapy: Present and Perspectives

2017

Inulin is an extremely adaptable polysaccharides consisting of glucopyranose end-capped (β-1,2) fructose repeating units and, as it is, can be classified as an inherently multifunctional polymeric scaffold. It may be further functionalized employing mild conditions to give rise desired biological and physicochemical properties exploitable for targeted anticancer applications (e.g., active targeting toward specific cytotypes, self-assembling behavior, selective cytoxicity and hyperthermia features). In this review, the main chemical features and the inulin derivatives applications in the field of targeted anticancer therapy is reported and discussed

Settore CHIM/09 - Farmaceutico Tecnologico ApplicativoInulin polysaccharide glucose targeted cancer therapy doxorubicin folate
researchProduct

Decagram-Scale Synthesis of Multicolor Carbon Nanodots: Self-Tracking Nanoheaters with Inherent and Selective Anticancer Properties

2022

Carbon nanodots (CDs) are a new class of carbon-based nanoparticles endowed with photoluminescence, high specific surface area, and good photothermal conversion, which have spearheaded many breakthroughs in medicine, especially in drug delivery and cancer theranostics. However, the tight control of their structural, optical, and biological properties and the synthesis scale-up have been very difficult so far. Here, we report for the first time an efficient protocol for the one-step synthesis of decagram-scale quantities of N,S-doped CDs with a narrow size distribution, along with a single nanostructure multicolor emission, high near-infrared (NIR) photothermal conversion efficiency, and sel…

theranosticsMolecular StructureCell SurvivalInfrared RaysOptical ImagingAntineoplastic AgentsBiocompatible Materialstargeted cancer therapyCarbonCell Linemulticolor emissionMaterials TestingHumansNanoparticlesGeneral Materials Sciencecarbon nanodotshigh yield synthesisDrug Screening Assays AntitumorReactive Oxygen SpeciesCell Proliferation
researchProduct